Neuronaldynamics Exercises

Documentation
Release 0.1.1.dev0+ng19946fa.d20161110

Wulfram Gerstner

November 10, 2016

Contents

1 Contents 3
1.1 Introduction o . e e e e e e e e 3
1.2 EXEICISES . . v v v v o e e e e e e e e e e e e e 4
1.3 Pythonexercise modules L e 15
1.4 LICENSE o v e e e e e e e e 25
2 Indices and tables 27
Python Module Index 29

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

This documentation is automatically generated documentation from the corresponding code repository hosted at
Github. The repository contains python exercises accompanying the book Neuronal Dynamics by Wulfram Gerst-
ner, Werner M. Kistler, Richard Naud and Liam Paninski.

Contents 1

https://github.com/EPFL-LCN/neuronaldynamics-exercises
http://neuronaldynamics.epfl.ch/

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

2 Contents

CHAPTER 1

Contents

1.1 Introduction

This repository contains python exercises accompanying the book Neuronal Dynamics by Wulfram Gerstner, Werner
M. Kistler, Richard Naud and Liam Paninski. References to relevant chapters will be added in the Teaching Materials
section of the book homepage.

1.1.1 Quickstart

See the indiviual exercises - they contain instructions on how to use the python code to solve them.

To install the exercises using pip simply execute:

‘pip install --upgrade neurodynex

To install the exercises with anaconda/miniconda execute:

‘conda install -c brian-team -c epfl-lcn neurodynex

See the setup instructions for details on how to install the python classes needed for the exercises.

1.1.2 Briani

We are currently rewriting the python exercises to use the more recent Brian2 Simulator. The old brianl exercises are
available on the brianl branch.

1.1.3 Requirements

The following requirements should be met:
* Either Python 2.7 or 3.4
* Brian2 Simulator
e Numpy
* Matplotlib

* Scipy (only required in some exercises)

http://neuronaldynamics.epfl.ch/
http://neuronaldynamics.epfl.ch/lectures.html
https://github.com/brian-team/brian2
https://github.com/EPFL-LCN/neuronaldynamics-exercises/tree/brian1
https://github.com/brian-team/brian2

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

1.2 Exercises

1.2.1 Setting up Python and Brian

Using python and pip

We provide the most recent versions of this repository as a pypi package called neurodynex.

To install the exercises using pip simply execute (the ——upgrade flag will overwrite existing installations with the
newest versions):

’pip install --upgrade neurodynex

Using anaconda/miniconda

We offer anaconda packages for the most recent releases, which is the easiest way of running the exercises.

Head over to the miniconda download page and install miniconda (for Python 2.7 preferably). To install or update
the exercise classes for your anaconda environment, it suffices to run:

conda install -c brian-team -c epfl-lcn neurodynex

Note: Should you want to run Spyder to work on the exercises, and you’re running into problems (commonly, after
running conda install spyder you can not start spyder due to an error related to numpy), try the following:

create a new conda environment with spyder and the exercises
conda create —--name neurodynex —-c brian-team -c epfl-lcn neurodynex spyder

activate the environment
source activate neurodynex

This creates a new conda environment (here is more information on conda environments) in which you can use spyder
together with the exercises.

1.2.2 Leaky-integrate-and-fire model

Book chapters
See Chapter 1 Section 3 on general information about leaky-integrate-and-fire models.
Python classes

The leaky integrate_and fire.LIF module contains all code required for this exercise. At the beginning
of your exercise solutions, import the contained functions by running

from neurodynex.leaky_ integrate_and fire.LIF import =«

You can then simply run the exercise functions by executing

LIF_Step() # example Step
LIF_Sinus () # example Sinus

4 Chapter 1. Contents

https://pypi.python.org/pypi/neurodynex/
http://conda.pydata.org/miniconda.html
https://github.com/spyder-ide/spyder
http://conda.pydata.org/docs/test-drive.html#managing-envs
http://neuronaldynamics.epfl.ch/online/Ch1.S3.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Exercise

Use the function LTF_Step () to simulate a Leaky Integrate-And-Fire neuron stimulated by a current step of a given
amplitude. The goal of this exercise is to modify the provided python functions and use the numpy and matplotlib
packages to answer the following questions.

Question

What is the minimum current step amplitude I_amp to elicit a spike with model parameters as given in
LIF_Step ()? Plot the injected values of current step amplitude against the frequency of the spiking response
(you can use the inter-spike interval to calculate this — let the frequency be 0 H z if the model does not spike, or emits
only a single spike) during a 500ms current step.

Exercise

Use the function LTF_Sinus () to simulate a Leaky Integrate-And-Fire neuron stimulated by a sinusoidal current
of a given frequency. The goal of this exercise is to modify the provided python functions and use the numpy and
matplotlib packages to plot the amplitude and frequency gain and phase of the voltage oscillations as a function
of the input current frequency.

Question

For input frequencies between 0.1k H z and 1.k H z, plot the input frequency against the resulting amplitude of sub-
threshold oscillations of the membrane potential. If your neuron emits spikes at high stimulation frequencies, decrease
the amplitude of the input current.

Question

For input frequencies between 0.1k H z and 1.k H z, plot the input frequency against the resulting frequency and phase
of subthreshold oscillations of the membrane potential. Again, keep your input amplitude in a regime, where the
neuron does not fire action potentials.

1.2.3 Numerical integration of the HH model of the squid axon

Book chapters
See Chapter 2 Section 2 on general information about the Hodgkin-Huxley equations and models.
Python classes

The hodgkin_huxley.HH module contains all code required for this exercise. At the beginning of your exercise
solutions, import the contained functions by running

from neurodynex.hodgkin_huxley.HH import =«

You can then simply run the exercise functions by executing

HH_Step() # example Step-current injection
HH_Sinus () # example Sinus-current injection
HH_Ramp () # example Ramp-current injection

1.2. Exercises 5

http://neuronaldynamics.epfl.ch/online/Ch2.S2.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Exercise

Use the function HH_Step () to simulate a HH neuron stimulated by a current step of a given amplitude. The goal of
this exercise is to modify the provided python functions and use the numpy and matplotlib packages to answer
the following questions.

Question

What is the lowest step current amplitude for generating at least one spike? Hint: use binary search on I__amp, with a
0.1 A resolution.

Question

What is the lowest step current amplitude to generate repetitive firing?

Question

Look at HH_Step () for I_amp = -5and I_amp = -1. What is happening here? To which gating variable do
you attribute this rebound spike?

Exercise

Use the function #H_Ramp () to simulate a HH neuron stimulated by a ramping curent.

Question

What is the minimum current required to make a spike when the current is slowly increased (ramp current waveform)
instead of being increased suddenly?

Exercise

To solve this exercise, you will need to change the actual implementation of the model. Download directly the source
file HH.py. When starting Python in the directory containing the downloaded file, you run functions from it directly
as follows:

import HH # import the HH module, i.e. the HH.py file
HH.HH_Step () # access the LIF Step function in HH.py

Then use any text editor to make changes in the HH. py file.

Note: You might have to reload the module for changes to become active - quitting and restarting the python inter-
preter reloads all modules. Alternatively, you can also force a reload by typing

reload (HH)

For automatic reloading you can also run ipython instead of python and set the autoreload flag. For this, make sure
you have ipython installed - if you have followed the setup instructions for anaconda/miniconda this should already
work.

6 Chapter 1. Contents

https://raw.githubusercontent.com/EPFL-LCN/neuronaldynamics-exercises/master/neurodynex/hodgkin_huxley/HH.py
http://ipython.readthedocs.org/en/stable/config/extensions/autoreload.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Question

What is the current threshold for repetitive spiking if the density of sodium channels is increased by a factor of 1.5?
To solve this, change the maximum conductance of sodium channel in HH_Neuron ().

1.2.4 Phase plane and bifurcation analysis

Book chapters
See Chapter 4 and especially Chapter 4 Section 3 for background knowledge on phase plane analysis.
Python classes

The phase_plane_analysis.fitzhugh_nagumo module contains all code required for this exercise. At the
beginning of your exercise solutions, import the contained functions by running

from neurodynex.phase_plane_analysis.fitzhugh nagumo import =«

You can then simply run the exercise functions by executing the functions, e.g.

get_trajectory ()
get_fixed_point ()
plot_flow()

Exercise: Phase plane analysis

Create a script file (e.g. answers . py) and add the following header:

from neurodynex.phase_plane_analysis.fitznagumo import =

your code here ..

You will type the code for your answers right below, adding more code with each exercise. When you want to execute
your code, open ipython in a terminal and type

’run answers.py

Or alternatively, from the command line execute

’python answers.py

For some exercises you will have to plot and analyze data. This can be done by importing matplotlib and numpy:

import matplotlib.pyplot as plt
import numpy as np

Question

Use the function p1t .plot to plot the two nullclines of the Fitzhugh-Nagumo system given in Eq. (1.1) for I/ = 0
ande = 0.1.

Plot the nullclines in the u — w plane, for voltages in the region u € [—2.5,2.5].

Note: For instance the following example shows plotting the function y(z) = — L; + x4+ 1:

1.2. Exercises 7

http://neuronaldynamics.epfl.ch/online/Ch4.html
http://neuronaldynamics.epfl.ch/online/Ch4.S3.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

X = np.arange(-2.5, 2.51, .1) # create an array of x values
y = —x%xx2 / 2. + x + 1 # calculate the function values for the given x values
plt.plot(x, y, color='black'") # plot y as a function of x

plt.xlim(-2.5, 2.5) # constrain the x limits of the plot

You can use similar code to plot the nullclines, inserting the appropriate equations.

Question

Get the lists t, u and w by calling t, u, w = get_trajectory(u_0, w_0, I) foruy =0, wy = 0and
I = 1.3. They are corresponding values of ¢, u(t) and w(t) during trajectories starting at the given point (ug, wg) for
a given constant current /. Plot the nullclines for this given current and the trajectories into the u — w plane.

Question

At this point for the same current I, call the function plot_ f1ow, which adds the flow created by the system Eq.
(1.1) to your plot. This indicates the direction that trajectories will take.

Note: If everything went right so far, the trajectories should follow the flow. First, create a new figure by calling
plt.figure () and then plot the v data points from the trajectory obtained in the previous exercise on the ordinate.

You can do this by using the p1t . plot function and passing only the array of u data points:

u= [1,2,3,4] # example data points of the u trajectory
plot (u, color='blue') # plot will assume that u is the ordinate data
Question

Finally, change the input current in your python file to other values I > 0 and reload it. You might have to first define
I as a variable and then use this variable in all following commands if you did not do so already. At which value of
do you observe the change in stability of the system?

Exercise: Jacobian & Eigenvalues

Consider the following two-dimensional Fitzhugh-Nagumo model:

du _ u(l—u?) —w+I=F(uw)
ai (1.1)
i e(u—05w+1) =eGu,w),

The linear stability of a system of differential equations can be evaluated by calculating the eigenvalues of the system’s
Jacobian at the fixed points. In the following we will graphically explore the linear stability of the fixed point of the
system Eq. (1.1). We will find that the linear stability changes as the input current crosses a critical value.

Set ¢ = .1. Create the variable I and set it to zero for the moment.

8 Chapter 1. Contents

http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Question
The Jacobian of Eq. (1.1) as a function of the fixed point is given by

1—3ud -1
J (o, wo) = 01 —0.05

Write a python function get_ jacobian (u_0,w_0) that returns the Jacobian evaluated for a given fixed point
(ug,vo) as a python list.

Note: An example for a function that returns a list corresponding to the matrix M (a, b) = < 8 11) > is:

def get_M(a,b):
return [[a,1l],[0,b]] # return the matrix

Question

The function u0, w0 = get_fixed point (I) gives you the numerical coordinates of the fixed point for a given
current /. Use the function you created in the previous exercise to evaluate the Jacobian at this fixed point and store
it in a new variable J.

Question

Calculate the eigenvalues of the Jacobian J, which you computed in the previous exercise , by using the function
np.linalg.eigvals (J). Both should be negative for I = 0.

Exercise: Bifurcation analysis

Wrap the code you wrote so far by a loop, to calculate the eigenvalues for increasing values of . Store the changing
values of each eigenvalue in seperate lists, and finally plot their real values against I.

Note: You can use this example loop to help you getting started

listl = []

list2 = []

currents = arange (0,4, .1) # the I values to use
for I in currents:

your code to calculate the eigenvalues e = [el,e2] for a given I goes here
listl.append(e[0].real) # store each value in a separate list
list2.append(e[l].real)

your code to plot listl and list 2 against I goes here

Question

In what range of I are the real parts of eigenvalues positive?

1.2. Exercises 9

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Question

Compare this with your earlier result for the critical 1. What does this imply for the stability of the fixed point? What
has become stable in this system instead of the fixed point?

1.2.5 Type | and type Il neuron models

Book chapters
See Chapter 4 and especially Chapter 4 Section 4 for background knowledge on Type I and Type II neuron models.
Python classes

The neurodynex.neuron_type.typeXY module contains all classes required for this exercise. For the exer-
cises you will need to import the classes NeuronX and NeuronY by running

from neurodynex.neuron_type.typeXY import NeuronX, NeuronY

Note: Both NeuronX and NeuronY inherit from a common base class
neuron_type.neurons.NeuronAbstract and thus implement similar methods.

For those who are interested, here is more about classes and inheritance in Python.

Exercise: Probing Type | and Type Il neuron models

This exercise deals not only with Python functions, but with python objects.

The classes NeuronX and NeuronY both are neurons, that have different dynamics: one is Type I and one is Type
I1. Finding out which class implements which dynamics is the goal of the exercise.

To run the exercises you will have to instantiate these classes. You can then plot step_current injections (using the
step method) or extract the firing rate for a given step current (using the get_rate method):

from neurodynex.neuron_type.typeXY import NeuronX, NeuronY
nl = NeuronX () # instantiates a new neuron of type X

nl.step(do_plot=True) # plot a step current injection

To check your results, you can use the get__neuron_type function, e.g.:

>> nl = NeuronX() # instantiates a new neuron of type X
>> nl.get_neuron_type ()
neurodynex.neuron_type.neurons.NeuronTypeOne

Question: Estimating the threshold

What is the threshold current for repetitive firing for Neuronx and Neurony?

Exploring various values of I_amp, find the range in which the threshold occurs, to a precision of 0.01.

Note: As shown abve, use the step functions to plot the responses to step current which starts after 100ms (to let
the system equilibrate) and lasting at least 1000ms (to detect repetitive firing with a long period):

10 Chapter 1. Contents

http://neuronaldynamics.epfl.ch/online/Ch4.html
http://neuronaldynamics.epfl.ch/online/Ch4.S4.html
https://en.wikibooks.org/wiki/Python_Programming/Classes

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Already from the voltage response near threshold you might have an idea which is type I or II, but let’s investigate
further.

Question: Pulse response

Plot the response to short current pulses near threshold, and interpret the results: which class is Type I, which is I1?

For example:

import matplotlib.pyplot as plt
plt.figure () # new figure
nl = NeuronX() # instantiates a new neuron of type X

t, v, w, I = nl.step(I_amp=1.05, I_tstart=100, I_tend=110, t_end=300)
plt.plot (t,v)

t, v, w, I = nl.step(I_amp=1.1, I_tstart=100, I_tend=110, t_end=300)
plt.plot (t,v)

can you simplify this in a loop?

plt.show ()

Exercise: f-l curves

During the questions of this exercise you will write a python script that plots the f-I curve for type I and type II neuron
models.

Get firing rates from simulations

We provide you with a function get_spiketimes to determine the spike times from given timeseries t and v:

>> from neurodynex.neuron_type.neurons import get_spiketimes

>>t, v, w, I = nl.step(I_amp=1.0, I_tstart=100, I_tend=1000., t_end=1000.)
>> st = get_spiketimes(t, v)

>> print st

[102.9 146.1 189.1 ... 1]

Use this function to write a Python function (in your own .py file) that calculates an estimate of the firing rate, given a
neuron instance and an input current:

def get_firing_rate(neuron, I_amp):
run a step on the neuron via neuron.step()
get the spike times

calculate the firing rate f

return f

Note: To calculate the firing rate, first calculate the inter-spike intervals (time difference between spikes) from the
spike times using this elegant indexing idiom

isi = st[l:]-st[:-1]

Then find the mean and take the reciprocal (pay attention when converting from 1/ms to Hz) to yield the firing-rate:

1.2. Exercises 11

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

f = 1000.0/mean (isi)

Note: You can check your results by calling:

get firing rate and plot the dynamics for an injection of I_amp
nl.get_rate(I_amp, do_plot=True)

Plot the f-l curve

Now let’s use your function get _firing_rate to plot an f-vs-I curve for both neuron classes.

Add the following function skeleton to your code and complete it to plot the f-I curve, given the neuron class as an
argument:

import matplotlib.pyplot as plt
import numpy as np

def plot_fI_curve (NeuronClass):

plt.figure() # new figure

neuron = NeuronClass () # instantiate the neuron class

I = np.arange(0.0,1.05,0.1) # a range of current inputs
£f =11

loop over current values
for I_amp in I:

firing_rate = # insert here a call to your function get_firing rate(...)
f.append(firing_rate)

plt.plot (I, f)

plt.xlabel ('Amplitude of Injecting step current (pA)')
plt.ylabel ('Firing rate (Hz)")

plt.grid()

plt.show()

e Call your plot_fI_curve function with each class NeuronX and NeuronY as argument.
* Change the T range to zoom in near the threshold, and try running it again for both classes.

Which class is Type I and which is Type 11?7

1.2.6 Hopfield Network model of associative memory

Book chapters
See Chapter 17 Section 2 for an introduction to Hopfield networks.
Python classes

The hopfield network.hopfield module contains all code required for this exercise. At the beginning of
your exercise solutions, import the contained functions by running

12 Chapter 1. Contents

http://neuronaldynamics.epfl.ch/online/Ch17.S2.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

from neurodynex.phase_plane_analysis.fitzhugh nagumo import =«

You can then simply run the exercise functions by executing the functions, e.g.

get_trajectory ()
get_fixed_point ()
plot_flow ()

Introduction: Hopfield-networks

This exercise uses a model in which neurons are pixels and take the values of -1 (off) or +1 (on). The network can store
a certain number of pixel patterns, which is to be investigated in this exercise. During a retrieval phase, the network is
started with some initial configuration and the network dynamics evolves towards the stored pattern (attractor) which
is closest to the initial configuration.

The dynamics is that of equation:

Si(t+1) = sgn Zwijsj(t)
J
In the Hopfield model each neuron is connected to every other neuron (full connectivity). The connection matrix is
_ 1 I
Wij =N > o
n

where N is the number of neurons, p!’ is the value of neuron 7 in pattern number £ and the sum runs over all patterns
from 4 = 1 to p = P. This is a simple correlation based learning rule (Hebbian learning). Since it is not a iterative
rule it is sometimes called one-shot learning. The learning rule works best if the patterns that are to be stored are
random patterns with equal probability for on (+1) and off (-1). In a large networks (N to infinity) the number of
random patterns that can be stored is approximately 0.14 times N.

Exercise: 4x4 Hopfield-network

This exercise deals not only with Python functions, but with Python classes and objects. The class
HopfieldNetwork implements a Hopfield network. To run the exercises you will have to instantiate the network:

from neurodynex.hopfield network.hopfield import HopfieldNetwork
n = HopfieldNetwork (4) # instantiates a new HopfieldNetwork

Note: See the documentation for the HopfieldNetwork class to see all methods you can use on a
instantiated HopfieldNetwork.

Storing patterns

Create an instance of the HopfieldNetwork with N=4. Use the make_pat tern method to store a pattern (default
is one random pattern with half of its pixels on) and test whether it can be retrieved with the run method:

n.run () # Note: this will fail with a RuntimeError if no patterns have been stored bef#re

The run method, by defaults, runs the dynamics for the first pattern with no pixel flipped.

1.2. Exercises 13

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Question: Capacity of the 4x4 network

What is the experimental maximum number of random patterns the 4x4 network is able to memorize?

Store more and more random patterns and test retrieval of some of them. The first few patterns should be stored
perfectly, but then the performance gets worse.

Does this correspond to the theoretical maximum number of random patterns the network should be able to memorize?
Exercise: 10x10 Hopfield-network
Question: Capacity of the 10x10 network

Increase the network size to 10x10 and repeat the steps of the previous exercise.

Question: Error correction

Instatiate a network and store a finite number of random patterns, e.g. 8.

How many wrong pixels can the network tolerate in the initial state, such that it still settles into the correct pattern?

Note: See the documentation for the run method to see how to control which percentage of pixels is flipped.

Question: Storing alphabet letters

Try to store alphabetic characters as the relevant patterns. How good is the retrieval of patterns? What is the reason?

Note: See the documentation for the make pattern method on how to store alphabet characters.

Exercise: Bonus

Try one of the preceding points in bigger networks.

Try downloading the source code for the network, and modify it by adding a smooth transfer function g to the neurons.
A short introducion on how to run the downloaded file can be found here.

1.2.7 Oja’s hebbian learning rule

Book chapters
See Chapter 19 Section 2 on the learning rule of Oja.
Python classes

The 0 jas_rule. oja module contains all code required for this exercise. At the beginning of your exercise solution
file, import the contained functions by

from neurodynex.ojas_rule.oja import =

You can then simply run the exercise functions by executing, e.g.

14 Chapter 1. Contents

https://raw.githubusercontent.com/EPFL-LCN/neuronaldynamics-exercises/master/neurodynex/hopfield_network/hopfield.py
http://neuronaldynamics.epfl.ch/online/Ch19.S2.html#SS1.p6

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

cloud = make_cloud() # generate data points
wcourse = learn (cloud) # learn weights and return timecourse

Exercise: Circular data

Use the functions make_cloud and learn to get the timecourse for weights that are learned on a circular data
cloud (ratio=1). Plot the time course of both components of the weight vector. Repeat this many times (learn
will choose random initial conditions on each run), and plot this into the same plot. Can you explain what happens?

Exercise: Elliptic data

Repeat the previous question with an elongated elliptic data cloud (e.g. ratio=0.3). Again, repeat this several
times.

Question

What difference in terms of learning do you observe with respect to the circular data clouds?

Question

Try to change the orientation of the ellipsoid (try several different angles). Can you explain what Oja’s rule does?

Note: To gain more insight, plot the learned weight vector in 2D space, and relate its orientation to that of the ellipsoid
of data clouds.

Exercise: Non-centered data

The above exercises assume that the input activities can be negative (indeed the inputs were always statistically cen-
tered). In actual neurons, if we think of their activity as their firing rate, this cannot be less than zero.

Try again the previous exercise, but applying the learning rule on a noncentered data cloud. E.g., use 5 +
make_cloud(...), which centers the data around (5, 5). What conclusions can you draw? Can you think of
a modification to the learning rule?

1.3 Python exercise modules

All exercises are contained in subpackages of the python package neurodynex. The subpackages contain modules used
for each exercise, along with a file called exercise.pdf with the actual exercises using the python code.

1.3.1 neurodynex package

Subpackages

neurodynex.hodgkin_huxley package

Submodules

1.3. Python exercise modules 15

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

neurodynex.hodgkin_huxley.HH module This file implements Hodgkin-Huxley (HH) model. You can inject a
step current, sinusoidal current or ramp current into neuron using HH_Step(), HH_Sinus() or HH_Ramp() methods
respectively.

Relevant book chapters:
e http://neuronaldynamics.epfl.ch/online/Ch2.S2.html

neurodynex.hodgkin_huxley.HH.HH_Neuron (curr, simtime)
Simple Hodgkin-Huxley neuron implemented in Brian2.

Parameters
* curr (TimedArray) — Input current injected into the HH neuron
e simtime (float) - Simulation time [seconds]
Returns Brian2 StateMonitor with recorded fields ['vm’, ‘I_e’, ‘m’, ‘n’, ‘h’]
Return type StateMonitor

neurodynex.hodgkin_huxley.HH.HH_Ramp (I_tstart=30, [I_tend=270, I_amp=20.0, tend=300,
dt=0.1, do_plot=True)
Run the HH model for a sinusoidal current

Parameters
e tend (float, optional)— the simulation time of the model [ms]
* I_tstart (float, optional)-— startof current ramp [ms]
e I_tend(float, optional)-end of the current ramp [ms]
* I_amp (float, optional)- final amplitude of current ramp [uA]
* do_plot (bool, optional) - plotthe resulting simulation
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.hodgkin_huxley.HH.HH_Sinus (I_freq=0.01, I_offset=0.5, I_amp=7.0, tend=600,
dt=0.1, do_plot=True)
Run the HH model for a sinusoidal current

Parameters
e tend (float, optional)— the simulation time of the model [ms]
* I_freq(float, optional)- frequency of current sinusoidal [kHz]
* I_offset (float, optional)-—DC offset of current [nA]
e I_amp (float, optional)-amplitude of sinusoidal [nA]
* do_plot (bool, optional)-plotthe resulting simulation
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.hodgkin_huxley.HH.HH_Step (I_tstart=20, [_tend=180, I _amp=7, tend=200,
do_plot=True)
Run the Hodgkin-Huley neuron for a step current input.

Parameters

* I_tstart (float, optional)- startof current step [ms]

16 Chapter 1. Contents

http://neuronaldynamics.epfl.ch/online/Ch2.S2.html
http://docs.python.org/2/library/functions.html#float

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

* I_tend(float, optional)- startof end step [ms]

e I_amp (float, optional)-—amplitude of current step [uA]

* tend (float, optional)— the simulation time of the model [ms]

* do_plot (bool, optional)- plotthe resulting simulation
Returns Brian2 StateMonitor with recorded fields ['vm’, ‘I_e’, ‘m’, ‘n’, ‘h’]
Return type StateMonitor

neurodynex.hodgkin_huxley.HH.plot_data (rec, title=None)
Plots a TimedArray for values I and v

Parameters
* rec (TimedArray) — the data to plot

* title(string, optional)- plottitle to display

Module contents

neurodynex.hopfield_network package

Submodules

neurodynex.hopfield_network.hopfield module This file implements a Hopfield Network model.
Relevant book chapters:
¢ http://neuronaldynamics.epfl.ch/online/Ch17.S2.html

class neurodynex.hopfield_network.hopfield.HopfieldNetwork (N)
Implements a Hopfield network of size N.

N

int

Square root of number of neurons
patterns

numpy.ndarray

Array of stored patterns
weight

numpy.ndarray

Array of stored weights
X

numpy.ndarray

Network state (of size N**2)
dynamic ()

Executes one timestep of the dynamics

grid (mu=None)
Reshape an array of length NxN to a matrix NxN

1.3. Python exercise modules 17

http://neuronaldynamics.epfl.ch/online/Ch17.S2.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

Parameters mu (TYPE, optional) — If None, return the reshaped network state. For an
integer i < P, return the reshaped pattern i.

Returns Reshaped network state or pattern
Return type numpy.ndarray

make_pattern (P=1, ratio=0.5, letters=None)
Creates and stores additional patterns to the network.

Parameters
* P(int, optional)-number of patterns (used only for random patterns)
* ratio(float, optional)— percentage of ‘on’ pixels for random patterns

* letters (TYPE, optional) — to store characters use as input a string with the de-
sired letters. Example: make_pattern (letters=’abcdjft’)

Raises ValueError — Raised if N!=10 and letters!=None. For now letters are hardcoded for
N=10.

overlap (mu)
Computes the overlap of the current state with pattern number mu.

Parameters mu (int)— The index of the pattern to compare with.

run (t_max=20, mu=0, flip_ratio=0, do_plot=True)
Runs the dynamics and optionally plots it.

Parameters
* t_max (float, optional)- Timesteps to simulate

e mu (int, optional)— Pattern number to use as initial pattern for the network state (<
P)

e flip ratio (int, optional) — ratio of randomized pixels. For example, to run
pattern #5 with 5% flipped pixels use run (mu=5, flip_ratio=0.05)

* do_plot (bool, optional)-Plotthe network as it is updated
Raises

* IndexError — Raised if given pattern index is too high.

* RuntimeError — Raised if no patterns have been created.

neurodynex.hopfield network.hopfield.load_ alphabet ()
Load alphabet dict from the file data/alphabet .pickle. gz, whichis included in the neurodynex release.

Returns Dictionary of 10x10 patterns
Return type dict

Raises ImportError — Raised if neurodynex can not be imported. Please install neurodynex.

Module contents

neurodynex.leaky_integrate_and_fire package

Submodules

18 Chapter 1. Contents

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

neurodynex.leaky_integrate_and_fire.LIF module This file implements a leaky intergrate-and-fire (LIF) model.
You can inject a step current or sinusoidal current into neuron using LIF_Step() or LIF_Sinus() methods respectively.

Relevant book chapters:

* http://neuronaldynamics.epfl.ch/online/Ch1.S3.html

neurodynex.leaky_integrate_and_fire.LIF.LIF_Neuron (curr, simtime)
Simple LIF neuron implemented in Brian2.

Parameters

* curr (TimedArray) — Input current injected into the neuron

e simtime (float) - Simulation time [seconds]
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.leaky_integrate_and_fire.LIF.LIF_Sinus (/_freq=0.l, I_offset=0.5,
I[_amp=0.5, tend=100, dt=0.1,
do_plot=True)
Run the LIF for a sinusoidal current

Parameters

e tend (float, optional)— the simulation time of the model [ms]
* I_freq(float, optional)- frequency of current sinusoidal [kHz]
* I_offset (float, optional)-—DC offset of current [nA]
* I_amp(float, optional)-amplitude of sinusoidal [nA]
* do_plot (bool, optional) - plotthe resulting simulation
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.leaky_integrate_and_fire.LIF.LIF_Step (I tstart=20, 1 _tend=70,
I_amp=1.005, tend=100,

do_plot=True)
Run the LIF and give a step current input.

Parameters

* tend (float, optional)— the simulation time of the model [ms]

* I_tstart (float, optional)- startof current step [ms]

* I_tend(float, optional)- startof end step [ms]

* I_amp (float, optional)-amplitude of current step [nA]

* do_plot (bool, optional) - plotthe resulting simulation
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded

Return type StateMonitor

neurodynex.leaky_integrate_and_fire.LIF.plot_data (rec, v_threshold=1.0, title=None)
Plots a TimedArray for values I and v

Parameters

* rec (TimedArray) — the data to plot

1.3. Python exercise modules 19

http://neuronaldynamics.epfl.ch/online/Ch1.S3.html
http://docs.python.org/2/library/functions.html#float

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

* v_threshold (float) — plots a threshold at this level [mV]

* title (string)— plot title to display

Module contents

neurodynex.neuron_type package

Submodules

neurodynex.neuron_type.neurons module This file implements a type I and a type II model from the abstract base
class NeuronAbstract.

You can inject step currents and plot the responses, as well as get firing rates.
Relevant book chapters:
* http://neuronaldynamics.epfl.ch/online/Ch4.S4.html

class neurodynex.neuron_type.neurons.NeuronAbstract
Bases: object

Abstract base class for both neuron types.

This stores its own recorder and network, allowing each neuron to be run several times with changing currents
while keeping the same neurogroup object and network internally.

get_rate (I_amp, t_end=1000.0, do_plot=False)
Return the firing rate under a current step.

Parameters
¢ NeuronClass (t ype) — Subclass of neurons.AbstractNeuron
e I_amp (float)— Amplitude of voltage step
e t_end (float) - Length of simulation
* do_plot (bool, optional)- plotthe results
Returns firing rate of neuron
Return type float

make_ neuron ()
Abstract function, which creates neuron attribute for this class.

run (curr, simtime)
Runs the neuron for a given current.

Parameters

e curr (TimedArray) — Input current injected into the neuron

e simtime (f1oat)— Simulation time [seconds]
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

step (t_end=300.0, I_tstart=20, I_tend=270, I_amp=0.5, do_plot=True, show=True)
Runs the neuron for a step current and plots the data.

Parameters

20 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/string.html#module-string
http://neuronaldynamics.epfl.ch/online/Ch4.S4.html
http://docs.python.org/2/library/functions.html#object
http://docs.python.org/2/library/functions.html#type
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

e t_end(float, optional) - the simulation time of the model [ms]

e I_tstart (float, optional)-— startof current step [ms]

* I_tend(float, optional)- startofend step [ms]

e I_amp (float, optional)-amplitude of current step [nA]

* do_plot (bool, optional) - plotthe resulting simulation

* show (bool, optional)— call plt.show for the plot
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

class neurodynex.neuron_type.neurons.NeuronTypeOne
Bases: neurodynex.neuron_type.neurons.NeuronAbstract

make_neuron ()
Sets the self.neuron attribute.

class neurodynex.neuron_type.neurons.NeuronTypeTwo
Bases: neurodynex.neuron_type.neurons.NeuronAbstract

make_neuron ()
Sets the self.neuron attribute.

neurodynex.neuron_type.neurons.get_spiketimes (7, v, v_th=0.5, do_plot=False)
Returns numpy.ndarray of spike times, for a given time and voltage series.

Parameters
e t (numpy.ndarray) — time dimension of timeseries [ms]
* v (numpy.ndarray) — voltage dimension of timeseries [mV]
* v_th(float, optional)- threshold voltage for spike detection [mV]
* do_plot (bool, optional)- plotthe results
Returns detected spike times
Return type np.ndarray

neurodynex.neuron_type.neurons.get_step_curr (I_tstart=20, I_tend=270, I_amp=0.5)
Returns a pA step current TimedArray.

Parameters

* I_tstart (float, optional) - startof current step [ms]

* I_tend(float, optional)- startof end step [ms]

e I_amp (float, optional)-amplitude of current step [pA]
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.neuron_type.neurons.plot_data (rec, title=None, show=False)
Plots a TimedArray for values I, vand w

Parameters
* rec (TimedArray) — the data to plot

* title(string, optional)- plottitle to display

1.3. Python exercise modules 21

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

* show (bool, optional) - call plt.show for the plot
Returns Brian2 StateMonitor with input current (I) and voltage (V) recorded
Return type StateMonitor

neurodynex.neuron_type.neurons.rec_to_tuple (rec)
Extracts a tuple of numpy arrays from a brian2 StateMonitor.

Parameters rec (StateMonitor) — state monitor with v, w, I recorded
Returns (t, v, w, I) tuple of numpy.ndarrays

Return type tuple

neurodynex.neuron_type.typeXY module This module has two neuron models, NeuronX and NeuronY. One of
them is Type I, the other is Type II - the assignment is randomly generated when the module is loaded.

Relevant book chapters:
* http://neuronaldynamics.epfl.ch/online/Ch4.S4.html

class neurodynex.neuron_type.typeXY.NeuronX
Bases: neurodynex.neuron_type.neurons.NeuronTypeOne

classmethod get_neuron_type (x)
Returns the underlying neuron type.

Returns Class of the underlying neuron model
Return type type

class neurodynex.neuron_type.typeXY.NeuronY
Bases: neurodynex.neuron_type.neurons.NeuronTypeTwo

classmethod get_neuron_type (x)
Returns the underlying neuron type.

Returns Class of the underlying neuron model
Return type type

neurodynex.neuron_type.typeXY.create_models ()
Creates classes NeuronX and NeuronY in this module that are random assignments of Typel and Type2 neuron
models.

Module contents

neurodynex.ojas_rule package

Submodules

neurodynex.ojas_rule.oja module This file implements Oja’s hebbian learning rule.
Relevant book chapters:
¢ http://neuronaldynamics.epfl.ch/online/Ch19.S2. html#SS1.p6

neurodynex.ojas_rule.oja.learn (cloud, initial_angle=None, eta=0.001)
Run one batch of Oja’s learning over a cloud of datapoints

Parameters

22 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#tuple
http://neuronaldynamics.epfl.ch/online/Ch4.S4.html
http://docs.python.org/2/library/functions.html#type
http://docs.python.org/2/library/functions.html#type
http://neuronaldynamics.epfl.ch/online/Ch19.S2.html#SS1.p6

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

* cloud (numpy.ndarray) — array of datapoints

* initial_angle (float, optional)-— angle of initial set of weights [deg]. If None,
this is random.

* eta(float, optional)- learning rate
Returns time course of the weight vector
Return type numpy.ndarray

neurodynex.ojas_rule.oja.make_cloud (n=10000, ratio=1, angle=0)
Returns an oriented elliptic gaussian cloud of 2D points

Parameters
* n(int, optional)-number of points in the cloud
* ratio (int, optional)— (std along the short axis) / (std along the long axis)
* angle (int, optional) - rotation angle [deg]

Returns array of datapoints

Return type numpy.ndarray

neurodynex.ojas_rule.oja.run_oja (n=10000, ratio=1.0, angle=0.0, do_plot=True)
Generates a point cloud and runs Oja’s learning rule once. Optionally plots the result.

Parameters
* n(int, optional)-number of points in the cloud
* ratio (float, optional)- (std along the short axis) / (std along the long axis)
* angle (float, optional)-rotation angle [deg]

* do_plot (bool, optional) - plotthe result

Module contents

neurodynex.phase_plane_analysis package

Submodules

neurodynex.phase_plane_analysis.fitzhugh_nagumo module This file implements functions to simulate and ana-
lyze Fitzhugh-Nagumo type differential equations with Brian2.

Relevant book chapters:
* http://neuronaldynamics.epfl.ch/online/Ch4.html
e http://neuronaldynamics.epfl.ch/online/Ch4.S3.html.

neurodynex.phase_plane_analysis.fitzhugh_nagumo.get_fixed_point (/=0.0,
eps=0.1,
a=2.0)
Computes the fixed point of the FitzHugh Nagumo model as a function of the input current I.
We solve the 3rd order poylnomial equation: v¥*3 +V +a-10=0
Parameters

e I — Constant input [mV]

1.3. Python exercise modules 23

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://neuronaldynamics.epfl.ch/online/Ch4.html
http://neuronaldynamics.epfl.ch/online/Ch4.S3.html

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

* eps — Inverse time constant of the recovery variable w [1/ms]
¢ a — Offset of the w-nullcline [mV]

Returns (v_fp, w_{p) fixed point of the equations

Return type tuple

neurodynex.phase_plane_analysis.fitzhugh_nagumo.get_trajectory (v0=0.0,
w0=0.0, 1=0.0,
eps=0.1, a=2.0,

tend=500.0)
Solves the following system of FitzHugh Nagumo equations for given initial conditions:

dv/dt = 1/1ms * v * (1-v¥*¥2) - w + I dw/dt = eps * (v + 0.5 * (a - w))
Parameters
e vO0 — Intial condition for v [mV]
¢ w0 — Intial condition for w [mV]
e I — Constant input [mV]
* eps — Inverse time constant of the recovery variable w [1/ms]
¢ a — Offset of the w-nullcline [mV]
¢ tend - Simulation time [ms]
Returns (t, v, w) tuple for solutions
Return type tuple

neurodynex.phase_plane_analysis.fitzhugh_nagumo.plot_£flow (/=0.0, eps=0.1, a=2.0)
Plots the phase plane of the Fitzhugh-Nagumo model for given model parameters.

Parameters
e I — Constant input [mV]
* eps — Inverse time constant of the recovery variable w [1/ms]

¢ a — Offset of the w-nullcline [mV]

Module contents

neurodynex.test package

Submodules

neurodynex.test.test HH module

neurodynex.test.test_HH.test_runnable_ Ramp ()
Test if HH_Ramp is runnable.

neurodynex.test.test_HH.test_runnable_Sinus ()
Test if HH_Sinus is runnable.

neurodynex.test.test_HH.test_runnable_Step()
Test if HH_Step is runnable.

24 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#tuple
http://docs.python.org/2/library/functions.html#tuple

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

neurodynex.test.test_LIF module

neurodynex.test.test_LIF.test_runnable_Sinus ()
Test if LIF_Sinus is runnable.

neurodynex.test.test_LIF.test_runnable_ Step()
Test if LIF_Step is runnable.

neurodynex.test.test_hopfield module
neurodynex.test.test_hopfield.test_alphabet ()
Test if alphabet is loadable.
neurodynex.test.test_hopfield.test_net_alphabet ()
Test hopfield network with alphabet patterns.

neurodynex.test.test_hopfield.test_net_random ()
Test hopfield network with random patterns.

neurodynex.test.test_nagumo module

neurodynex.test.test_nagumo.test_runnable get_ fixed point ()
Test if get_fixed_point is runnable.

neurodynex.test.test_nagumo.test_runnable_get_trajectory ()
Test if get_trajectory is runnable.

neurodynex.test.test_nagumo.test_runnable plot_flow()
Test if plot_flow is runnable.

neurodynex.test.test_neuron_type module
neurodynex.test.test_neuron_type.run_neuron (c)
neurodynex.test.test_neuron_type.test_class_assignment ()

Test if NeuronX and NeuronY are properly assigned to NeuronTypeOne and NeuronTypeTwo.

neurodynex.test.test_neuron_type.test_neurons ()
Test if neuron functions are runnable.

neurodynex.test.test_oja module
neurodynex.test.test_oja.test_oja()
Test if Oja learning rule is runnable.

Module contents

Module contents
1.4 License

This free software: you can redistribute it and/or modify it under the terms of the GNU General Public License 2.0
as published by the Free Software Foundation. You should have received a copy of the GNU General Public License
along with the repository. If not, see http://www.gnu.org/licenses/.

Should you reuse and publish the code for your own purposes, please point to the webpage
http://neuronaldynamics.epfl.ch or cite the book: Wulfram Gerstner, Werner M. Kistler, Richard Naud, and
Liam Paninski. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge
University Press, 2014.

1.4. License 25

http://www.gnu.org/licenses/
http://neuronaldynamics.epfl.ch

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

26 Chapter 1. Contents

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

27

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

28 Chapter 2. Indices and tables

Python Module Index

n

neurodynex, 25
neurodynex.hodgkin_huxley, 17
neurodynex.hodgkin_huxley.HH, 16
neurodynex.hopfield_network, 18
neurodynex.hopfield_network.hopfield,
17
neurodynex.leaky_integrate_and_fire, 20
neurodynex.leaky_integrate_and_fire.LIF,
19
neurodynex.neuron_type, 22
neurodynex.neuron_type.neurons, 20
neurodynex.neuron_type.typeXyY, 22
neurodynex.ojas_rule, 23
neurodynex.ojas_rule.oja, 22
neurodynex.phase_plane_analysis, 24
neurodynex.phase_plane_analysis.fitzhugh_nagumo,
23
neurodynex.test, 25
neurodynex.test.test_HH, 24
neurodynex.test.test_hopfield, 25
neurodynex.test.test_LIF, 25
neurodynex.test.test_nagumo, 25
neurodynex.test.test_neuron_type, 25
neurodynex.test.test_oja, 25

29

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

30 Python Module Index

Index

C HopfieldNetwork (class in neuro-
create_models() (in module neuro- dynex.hopfield_network.hopfield), 17
dynex.neuron_type.typeXY), 22 L
D learn() (in module neurodynex.ojas_rule.oja), 22
dynamic() (neurodynex.hopfield_network.hopfield. HopfieldNEfwbiguron() (in module neuro-
method), 17 dynex.leaky_integrate_and_fire.LIF), 19
LIF_Sinus() (in module neuro-
G dynex.leaky_integrate_and_fire.LIF), 19
get_fixed_point() (in module neuro- LIF_Step(()i) k(m. teorat mzdlgle LIF), 19 feuro-
dynex.phase_plane_analysis.fitzhugh_nagumo), ynex.feaky_integtate_anc_nre. ’
23 load_alphabet() (in module neuro-
get_neuron_type() (neuro- dynex.hopfield_network.hopfield), 18
dynex.neuron_type.typeXY.NeuronX class M
method), 22
get_neuron_type() (neuro- make_cloud() (in module neurodynex.ojas_rule.oja), 23
Bl d;nex.neuron type.typeXY.NeuronY class Make_neuron() (neurodynex.neuron_type.neurons.NeuronAbstract
method), 22 method), 20
get_rate() (neurodynex.neuron_type.neurons.Neuron Abstracdiake_neuron() (neurodynex.neuron_type.neurons.NeuronTypeOne
method), 20 method), 21
get_spiketimes() (in module neuro- Mmake_neuron() (neurodynex.neuron_type.neurons.NeuronTypeTwo
dynex.neuron_type.neurons), 21 method), 21
get_step_curr() (in module neuro- make_pattern() (neurodynex.hopfield_network.hopfield.HopfieldNetwork
dynex.neuron_type.neurons), 21 method), 18
get_trajectory() (in module neuro- N
dynex.phase_plane_analysis.fitzhugh_nagumo),
24 N (neurodynex.hopfield_network.hopfield. HopfieldNetwork
grid() (neurodynex.hopfield_network.hopfield.HopfieldNetwork attribute), 17
method), 17 neurodynex (module), 25
neurodynex.hodgkin_huxley (module), 17
H neurodynex.hodgkin_huxley.HH (module), 16
HH_Neuron() (in module neuro- neurodynex.hopfield_network (module), 18
_ dynex.hodgkin_huxley.HH), 16 neurodynex.hopfield_network.hopfield (module), 17
HH_Ramp() (in_ module neuro- nheurodynex.leaky_integrate_and_fire (module), 20
a dynex.hodgkin_huxley.HH), 16 neurodynex.leaky_integrate_and_fire.LIF (module), 19
HH_Sinus() (in module neuro- nheurodynex.neuron_type (module), 22
dynex.hodgkin_huxley.HH), 16 neurodynex.neuron_type.neurons (module), 20

HH_Step() (in module neurodynex.hodgkin_huxley.HH), neurodynex.n.euron_type.typeXY (module), 22
16 neurodynex.ojas_rule (module), 23

neurodynex.ojas_rule.oja (module), 22

31

Neuronaldynamics Exercises Documentation, Release 0.1.1.dev0+ng19946fa.d20161110

neurodynex.phase_plane_analysis (module), 24
neurodynex.phase_plane_analysis.fitzhugh_nagumo
(module), 23
neurodynex.test (module), 25
neurodynex.test.test_ HH (module), 24
neurodynex.test.test_hopfield (module), 25
neurodynex.test.test_LIF (module), 25
neurodynex.test.test_nagumo (module), 25
neurodynex.test.test_neuron_type (module), 25
neurodynex.test.test_oja (module), 25

NeuronAbstract (class in neuro-
dynex.neuron_type.neurons), 20

NeuronTypeOne (class in neuro-
dynex.neuron_type.neurons), 21

NeuronTypeTwo (class in neuro-

dynex.neuron_type.neurons), 21
NeuronX (class in neurodynex.neuron_type.typeXY), 22
NeuronY (class in neurodynex.neuron_type.typeXY), 22

O

overlap() (neurodynex.hopfield_network.hopfield.HopfieldNetwork

method), 18

P

patterns (neurodynex.hopfield_network.hopfield. HopfieldNetwork

attribute), 17
plot_data() (in module neurodynex.hodgkin_huxley.HH),
17

plot_data() (in module neuro-
dynex.leaky_integrate_and_fire.LIF), 19

plot_data() (in module neuro-
dynex.neuron_type.neurons), 2

plot_flow() (in module neuro-
dynex.phase_plane_analysis.fitzhugh_nagumo),
24

R

rec_to_tuple() (in module neuro-

dynex.neuron_type.neurons), 22

test_class_assignment() (in module neuro-
dynex.test.test_neuron_type), 25

test_net_alphabet() (in module neuro-
dynex.test.test_hopfield), 25

test_net_random() (in module neuro-
dynex.test.test_hopfield), 25

test_neurons() (in module neuro-
dynex.test.test_neuron_type), 25

test_oja() (in module neurodynex.test.test_oja), 25

test_runnable_get_fixed_point() (in module neuro-
dynex.test.test_nagumo), 25

test_runnable_get_trajectory() (in module neuro-
dynex.test.test_nagumo), 25

test_runnable_plot_flow() (in module neuro-
dynex.test.test_nagumo), 25

test_runnable_Ramp() (in module neuro-
dynex.test.test_ HH), 24

test_runnable_Sinus() (in module neuro-
dynex.test.test_HH), 24

test_runnable_Sinus() (in module neuro-
dynex.test.test_LIF), 25

test_runnable_Step() (in module neuro-
dynex.test.test_HH), 24

test_runnable_Step() (in module neuro-

dynex.test.test_LIF), 25

W

weight (neurodynex.hopfield_network.hopfield. HopfieldNetwork
attribute), 17

X

x (neurodynex.hopfield_network.hopfield.HopfieldNetwork
attribute), 17

run() (neurodynex.hopfield_network.hopfield.HopfieldNetwork

method), 18

run() (neurodynex.neuron_type.neurons.NeuronAbstract
method), 20

run_neuron() (in module
dynex.test.test_neuron_type), 25

run_oja() (in module neurodynex.ojas_rule.oja), 23

S

step() (neurodynex.neuron_type.neurons.NeuronAbstract
method), 20

neuro-

T

test_alphabet() (in module neurodynex.test.test_hopfield),
25

32

Index

	Contents
	Introduction
	Exercises
	Python exercise modules
	License

	Indices and tables
	Python Module Index

